Share this history on :

Selasa, 29 November 2011

LUAS DAN VOLUME BANGUN RUANG SISI LENGKUNG

1. TABUNG
1.1. Pengertian Tabung
Tabung adalah bangun ruang yang dibatasi oleh dua sisi yang kongruen dan sejajar yang berbentuk lingkaran serta sebuah sisi lengkung.
1.2. Unsur-unsur Tabung
Tabung memiliki 2 rusuk dan 3 sisi.
1.3. Luas dan volume tabung
•Luas permukaan tabung atau luas tabung:
L = luas sisi alas + luas sisi tutup + luas selimut
      tabung
  = π r2 + π r2 + 2 π r t

   = 2 π r2 + 2 π r t
   = 2 π r (r + t)

•Luas tabung tanpa tutup :
Ltanpa tutup = luas sisi alas + luas selimut
               = π r2 + 2 π r t
•Volume tabung :
V = luas alas x tinggi
   = π r2 x t
   = π r2 t
2. KERUCUT
2.1. Pengertian Kerucut
Kerucut adalah bangun ruang yang dibatasi oleh sebuah sisi alas berbentuk lingkaran dan sebuah sisi lengkung.
2.2. Unsur-unsur Kerucut
Kerucut memiliki 1 titik sudut, 1 rusuk dan 2 sisi .



2.3. Luas dan volume kerucut
• Luas permukaan kerucut atau luas kerucut :
L = luas sisi alas + luas selimut kerucut
   = π r2 + π r s
   = π r (r + s)

•Volume kerucut :
V = 1/3 x luas alas x tinggi
   = 1/3 x π r2 x t
   = 1/3 π r2t

3. BOLA
3.1. Pengertian Bola
Bola adalah bangun ruang yang dibatasi oleh sebuah sisi lengkung/kulit bola.
3.2. Unsur-unsur Bola
Bola memiliki satu sisi.

3.3. Luas dan volume Bola
•Luas bola :
L = 4 x luas lingkaran
   = 4 x π r2
   = 4 π r2
•Volume bola :
V = 4 x volume kerucut
  = 4 x 1/3 π r2 t
karena pada bola, t = r maka
  = 4 x 1/3 π rr
  = 4 x 1/3π r3
  = 4/3 π r3

0 komentar:

Posting Komentar