1. TABUNG
1.1. Pengertian Tabung
Tabung adalah bangun ruang yang dibatasi oleh dua sisi yang kongruen dan sejajar yang berbentuk lingkaran serta sebuah sisi lengkung.
1.2. Unsur-unsur Tabung
Tabung memiliki 2 rusuk dan 3 sisi.
1.3. Luas dan volume tabung
•Luas permukaan tabung atau luas tabung:
L = luas sisi alas + luas sisi tutup + luas selimut
tabung
= π r2 + π r2 + 2 π r t
= 2 π r2 + 2 π r t
= 2 π r (r + t)
•Luas tabung tanpa tutup :
Ltanpa tutup = luas sisi alas + luas selimut
= π r2 + 2 π r t
•Volume tabung :
V = luas alas x tinggi
= π r2 x t
= π r2 t
2. KERUCUT
2.1. Pengertian Kerucut
Kerucut adalah bangun ruang yang dibatasi oleh sebuah sisi alas berbentuk lingkaran dan sebuah sisi lengkung.
2.2. Unsur-unsur Kerucut
Kerucut memiliki 1 titik sudut, 1 rusuk dan 2 sisi .
2.3. Luas dan volume kerucut
• Luas permukaan kerucut atau luas kerucut :
L = luas sisi alas + luas selimut kerucut
= π r2 + π r s
= π r (r + s)
•Volume kerucut :
V = 1/3 x luas alas x tinggi
= 1/3 x π r2 x t
= 1/3 π r2t
3. BOLA
3.1. Pengertian Bola
Bola adalah bangun ruang yang dibatasi oleh sebuah sisi lengkung/kulit bola.
3.2. Unsur-unsur Bola
Bola memiliki satu sisi.
3.3. Luas dan volume Bola
•Luas bola :
L = 4 x luas lingkaran
= 4 x π r2
= 4 π r2
•Volume bola :
V = 4 x volume kerucut
= 4 x 1/3 π r2 t
karena pada bola, t = r maka
= 4 x 1/3 π r2 r
= 4 x 1/3π r3
= 4/3 π r3
1.1. Pengertian Tabung
Tabung adalah bangun ruang yang dibatasi oleh dua sisi yang kongruen dan sejajar yang berbentuk lingkaran serta sebuah sisi lengkung.
1.2. Unsur-unsur Tabung
Tabung memiliki 2 rusuk dan 3 sisi.
1.3. Luas dan volume tabung
•Luas permukaan tabung atau luas tabung:
L = luas sisi alas + luas sisi tutup + luas selimut
tabung
= π r2 + π r2 + 2 π r t
= 2 π r2 + 2 π r t
= 2 π r (r + t)
•Luas tabung tanpa tutup :
Ltanpa tutup = luas sisi alas + luas selimut
= π r2 + 2 π r t
•Volume tabung :
V = luas alas x tinggi
= π r2 x t
= π r2 t
2. KERUCUT
2.1. Pengertian Kerucut
Kerucut adalah bangun ruang yang dibatasi oleh sebuah sisi alas berbentuk lingkaran dan sebuah sisi lengkung.
2.2. Unsur-unsur Kerucut
Kerucut memiliki 1 titik sudut, 1 rusuk dan 2 sisi .
2.3. Luas dan volume kerucut
• Luas permukaan kerucut atau luas kerucut :
L = luas sisi alas + luas selimut kerucut
= π r2 + π r s
= π r (r + s)
•Volume kerucut :
V = 1/3 x luas alas x tinggi
= 1/3 x π r2 x t
= 1/3 π r2t
3. BOLA
3.1. Pengertian Bola
Bola adalah bangun ruang yang dibatasi oleh sebuah sisi lengkung/kulit bola.
3.2. Unsur-unsur Bola
Bola memiliki satu sisi.
3.3. Luas dan volume Bola
•Luas bola :
L = 4 x luas lingkaran
= 4 x π r2
= 4 π r2
•Volume bola :
V = 4 x volume kerucut
= 4 x 1/3 π r2 t
karena pada bola, t = r maka
= 4 x 1/3 π r2 r
= 4 x 1/3π r3
= 4/3 π r3
0 komentar:
Posting Komentar